

Pictures

GALLAGHER LAKE ROCK SLIDE

April 1, 2016

What happened and where?

On January 25, 2016 a significant rock slide occurred at Gallagher Lake which impacted a siphon on the canal irrigation system which provides irrigation water to the Town of Oliver, Electoral Area C (rural Oliver), and Osoyoos Indian Band. The break is near station 2+055 on the flume section at Gallagher Lake.

Works Schedule

April 1	First break, complete framing forms and culvert setting
April 2	Concrete pour for first fix
April 4	Removal of forms
April 5 to 7	Prepping of second fix, framing forms and culvert setting and patching cracks and seams
April 8	Removal of forms
April 11 and 12 April 18	Additional concrete parging, tie-ins and clean-up Irrigation Turn On

What this means?

The Town may be able to send water through the canal by April 13 or 14, depending on no complications. May require a few days to assess to ensure everything is ready for irrigation turn on.

The Town will strive for irrigation turn-ons starting the week of April 18th.

Communication

All communications and updates will be through the Town of Oliver website <u>www.oliver.ca</u>, click on **Gallagher Lake Rock Slide – Quick Link** on the Home Page.

Background

This section of siphon was installed in 1997 to help minimize and eliminate damages to the existing canal system. It is a 1950 mm (78") diameter reinforced concrete pipe buried over with approximately 3 m of fill. It was engineered to withstand a great force if more debris were to fall. The fill was unable to withstand the force and direct damage occurred.